LOAD CELL AMPLIFIER

MODEL LA-1031A

OPERATION MANUAL

TOYO SOKKI CO.,LTD.

Head Office: 964-24 Nippa-chou, Kouhoku-ku, Yokohama, 223-0057 Japan

$$
\begin{array}{ll}
\text { T E L } & +81-45-540-8353 \\
\text { F A X } & +81-45-544-8354
\end{array}
$$

§ 1. Summary 3
§2. Appearance and Each name 4
§3. Operation 5
3 - 1) ExCitation select switch (slide switch 10V, 5V, 2.5V) 5
3 - 2) TARE (initial TARE SETting, 16 Position rotary switch) 5
3-3) ZERO (ZERO POINT ADJUSTMENT TRIMMER) 5
3 - 4) GAIN MODE, RANGE (AMPLIFICATION RANGE DIP sWITCH) 6
3-5) SPAN (SPAN ADJUSTMENT TRIMMER). 7
3-6) CHECK (PSEUDO INPUT SIGNAL SETTING ROTARY SWITCH) 7
3-7) FILTER (CUT OfF FREQUENCY OF ANALOG FILTER) 7
3-8) Remote sensing function 7
§4. Calibration 8
4-1) Necessary setting prior to calibrate 8
4-2) CALIbRATION METHOD WITH ACTUAL LOAD 8
§5. Troubleshooting 9
5-1) BASIC CHECK POINT 9
5 - 2) What to do if the desired calibration is not achieved 9
5 - 3) Fine tuning of Zero and span of current output 9
$5-4$) JUDGEMENT IF THIS UNIT IS MALFUNCTION 10
5-5) Check Load Cell 10
5 - 6) OUTPUT DOESN'T BECOME ZERO EVEN IF AZ SWITCH IS PUSHED 10
§6. Installation and connection method 12
6 - 1) Installation environment, etc. 12
6-2) TERMINAL CONNECTION 12
6-3) To obtain stable measurement 14
§7. List of Models and Accessories 15
7-1) Model 15
7-2) AcCESSORIES 15
§8. Specifications 16
8-1) Power supply part for Load Cell 16
8-2) AMPLIFIRE PART AND I/O PART 16
8 - 3) Analog Auto Zero function 17
8-4) General 18
§ 9. Dimensional Drawing 19
§ 10 . Functional block diagram 19
§ 1 1. Timing chart of Auto Zero (AZ) operation 20

§ 1. Summary

This unit is a low drift instrumentation amplifier which amplifies signal from a strain gauge transducer and outputs voltage signal $0 \sim \pm 5 \mathrm{~V}$ and current signal $4 \sim 20 \mathrm{~mA}$.
This unit has analog Auto Zero function which set output signal to zero by a button switch or external command input.
Applied voltage to Load Cell or a sensor is selected from 10V, 5V, 2.5 V by a slide switch. Frequency characteristic is selected by two slide switches.
Also this unit has a remote sensing function to reduce measurement error caused by a sensor cable.
The power supplied voltage is AC85~264V as standard or DC20~27V as option, which specified as option at the time of order.
DC/DC converter in this unit isolates power supplied voltage from current / voltage output signal.

§ 2. Appearance and Each name

Appearance of this unit

(1) POWER (LED)
(2) CHECK (CAL SW)
(3) TARE
(4) ZERO (C, F)
(5) $\operatorname{SPAN}(C, F)$
(6) GAIN MODE
(7) RANGE
(8) TERMINAL (5 mm pitch)
(9) EXCITATION VOLTAGE
(10) FILTER 1st
(11) FILTER 2nd
(12) FINE-TUNE of CURRENT OUTPUT (Z, S)
(13) AUTO ZERO
(14) AUTO ZERO RESET

LED for indicating power ON
Pseudo signal generation switch, 16 position rotary switch
For Tare subtraction, 16 position rotary switch
Zero adjustment trimmer (Coarse / Fine: 15 rotation)
Span adjustment trimmer (Coarse / Fine:15 rotation)
Low/High (input signal $\geqq 0.6 \mathrm{mV} / \mathrm{V}$: Low, $0.6 \mathrm{mV} / \mathrm{V}$: High) Amplification range adjusted by a DIP switch (5 steps setting) External command input of AZ and answer back signal of SET
Select excitation voltage by a slide switch (10V, 5V, 2.5V)
Select the range of cut off frequency by a slide switch (L:1Hz, ML: $10 \mathrm{~Hz}, \mathrm{MH}: 100 \mathrm{~Hz}, \mathrm{H}: 1 \mathrm{kHz}$)
Select a multiple of cut off frequency ($x 2, x 5, x 10$) by a slide switch
Fine adjustment trimmer for Zero and Span of current output

Button switch and status LED of Auto Zero
Button switch of canceling Auto Zero
(15) TERMINAL(7.62mm pitch) 14pin terminal for Load Cell, Analog output and Power line
(16) MOUNTING HOLE Fixing hole $2-\Phi 4.5 \mathrm{~mm}$

§3. Operation

This unit outputs voltage signal and current signal simultaneously. Voltage output is bipolar and can be output up to $\pm 5 \mathrm{~V}$. (Max. $\pm 10 \mathrm{~V}$ depending on the intensity of input signal from a sensor)
Current output $4 \sim 20 \mathrm{~mA}$ is available only when voltage output is set to $0 \sim 5 \mathrm{~V}$. Combination other than $4 \sim 20 \mathrm{~mA} / 0 \sim 5 \mathrm{~V}$ is impossible.

3-1) Excitation select switch (slide switch $10 \mathrm{~V}, 5 \mathrm{~V}, 2.5 \mathrm{~V}$)

This switch enable to change an applied voltage to Load Cell or a sensor.
Before calibrating this unit, check the specification of Load Cell and apply an appropriate excitation voltage to Load Cell. Changing excitation voltage can correct sensitivity of this unit automatically, but there is an error to consider.

When changing excitation voltage from 10 V to 5 V or 2.5 V , amplification of this unit can be corrected 2times, 4times respectively. An error of sensitivity against the previous value is up to 2% when changing excitation voltage. After calibration of this unit has done, changing excitation voltage, calibration value of zero and span will be modified slightly. So recommend to calibrate again.
$3-2$) TARE (initial Tare setting, 16 position rotary switch)
This switch can be used to cancel an unbalanced voltage equivalent to Tare amount when Tare amount is too large to achieve zero adjustment. The setting is 16 positions from 0 to F and can be set at about $0.15 \mathrm{mV} / \mathrm{V}$ step. (0 to $2.25 \mathrm{mV} / \mathrm{V}$) The larger the setting value, the larger Tare cancellation amount.

When adjusting the output to 0 V or 4 mA (with Tare load applied), set a coarse [ZERO] trimmer at the center position beforehand and turn a [TARE] rotary switch to set the output value to the closest of 0 V or 4 mA .

If a weight of Tare load is known in advance, equivalent output level of Load Cell weighing Tare load can be calculated using the following formula to determine the code of TARE rotary switch.

Equivalent LC output of Tare $(\mathrm{mV} / \mathrm{V})=\frac{\text { Tare load weight }}{\text { Load Cell rated capacity }} \times$ Load Cell rated output $(\mathrm{mV} / \mathrm{V})$
Code and Tare amount by [TARE] rotary switch

Code	Tare amount	Code	Tare amount		Code	Tare amount	Code	Tare amount
0	0	mV / V	4	0.6	mV / V	8	$1.2 \mathrm{mV} / \mathrm{V}$	C
1	$0.15 \mathrm{mV} / \mathrm{V}$	5	$0.75 \mathrm{mV} / \mathrm{V}$	9	$1.35 \mathrm{mV} / \mathrm{V}$	mV / V		
2	$0.3 \mathrm{mV} / \mathrm{V}$	6	0.9	mV / V	A	$1.5 \quad \mathrm{mV} / \mathrm{V}$	E	$2.1 .95 \mathrm{mV} / \mathrm{V}$
3	$0.45 \mathrm{mV} / \mathrm{V}$	7	$1.05 \mathrm{mV} / \mathrm{V}$	B	$1.65 \mathrm{mV} / \mathrm{V}$	F	$2.25 \mathrm{mV} / \mathrm{V}$	

3-3) ZERO (Zero point adjustment trimmer)

This is a zero adjustment trimmer to set the output voltage to 0 V or 4 mA when there is unbalance voltage of Load Cell or voltage of Tare load. There are a coarse adjustment trimmer and a fine adjustment trimmer.
Adjustment range of zero trimmer is approximately $\pm 0.2 \mathrm{mV} / \mathrm{V}$.
If zero adjustment cannot be achieved within this range, use a [TARE] rotary switch.

3-4) GAIN MODE, RANGE (Amplification range DIP switch)
Set the amplification range of a [SPAN] adjustment trimmer according with the output voltage of Load Cell or sensor.

Amplification range is adjustable in 10 steps by combining [GAIN MODE (H/L)] and [RANGE $(1 \sim 5)]$ DIP switch. Set only one bit of the [RANGE $(1 \sim 5)$] DIP switch. Amplification will be larger as a range number becomes larger. Appropriate setting of [GAIN MODE] and [RANGE] is determined by the following formula. Please refer the table below.
※When span amount of output of Load Cell is 0.6 to $3.3 \mathrm{mV} / \mathrm{V}$, set GAIN MODE $=$ L.
When it is 0.15 to $0.6 \mathrm{mV} / \mathrm{V}$, set GAIN MODE $=\mathrm{H}$.
※If output voltage is set to 10 V , [GAIN MODE] should be set to H .
LC output of maximum load $(\mathrm{mV} / \mathrm{V})=\frac{\text { Maximum load }}{\text { Load Cell rated capacity }} \times$ Load Cell rated output (mV/V)
Required amplification $=\frac{\text { Desired output voltage at maximum load }(\mathrm{mV})}{\text { Load Cell output of maximum load }(\mathrm{mV} / \mathrm{V}) \times E X C(\mathrm{~V})}$
※EXC is applied voltage to Load Cell $=10 \mathrm{~V}, 5 \mathrm{~V}$ or 2.5 V

$\begin{aligned} & \text { GAIN } \\ & \text { MODE } \end{aligned}$	RANGE$(1 ~ 5)$	Amplification			Necessary LC output amount (mV/V)	
		$E X C=10 \mathrm{~V}$	EXC=5V	EXC=2.5V	for 5V,20mA output	for 10V output
L	1	149~236	298~ 472	596~ 944	$3.36 \sim 2.12$	---
	2	209~330	418~660	836~1320	$2.39 \sim 1.52$	-
	3	299~472	598~ 944	119~1888	$1.67 \sim 1.06$	-——
	4	418~ 661	836~1322	1672~ 2644	$1.20 \sim 0.76$	-——
	5	598~ 944	1196~1888	2392~3776	$0.84 \sim 0.53$	-——
H	1	598~ 944	1196~1888	2392~ 3776	$0.84 \sim 0.53$	$3.36 \sim 2.12$
	2	837~1316	1674~2632	3348~ 5264	$0.60 \sim 0.38$	$2.39 \sim 1.52$
	3	1195~1879	2390~3758	4780~ 7516	$0.42 \sim 0.27$	$1.67 \sim 1.06$
	4	1673~2631	3346~5262	6692~10524	$0.30 \sim 0.19$	$1.20 \sim 0.76$
	5	2390~3759	4780~7518	9560~15036	$0.21 \sim 0.13$	$0.84 \sim 0.53$

Numeric values in above table are typical value. They have an error up to 1% because of resistance tolerance in a circuit.

If this unit is shipped combined with a weighing scale which is adjusted together, no need to change GAIN MODE nor RANGE.
If this unit is shipped alone, GAIN MODE $=L$ and RANGE $=4$ are set as for reference sensitivity, $1 \mathrm{mV} / \mathrm{V}$ input and 5 V output, at the time of shipment.

!CAUTION

Reference sensitivity of this unit is specified as $1 \mathrm{mV} / \mathrm{V}$ input and $\mathrm{EXC}=10 \mathrm{~V}$. If input signal is small, amplify it larger by setting GAIN MODE and RANGE higher, but it leads to side effects. First, it worsens temperature characteristic of zero point of output. Second, it worsens fluctuation of output signal. Noise level of amplifier of this unit is $0.5 \mathrm{mVp}-\mathrm{p}$ of 5 V output. If amplifying larger, noise level is also amplified, it leads to fluctuate the output obviously.

Filter setting also affects fluctuation of the output signal. Noise level of the output signal is larger about 4 times at 100 Hz and about 10 times at 7 kHz compared to 2 Hz . But it depends on the connected equipment for measuring the output signal of this unit.

3-5) SPAN (SPAN adjustment trimmer)

This is a span adjustment trimmer for amplifying incoming signal. There are a coarse adjustment trimmer and a fine adjustment trimmer.
Rotate a trimmer clockwise (CW) to increase amplification, counterclockwise (CCW) to decrease it. Rotate a coarse adjustment trimmer fully counterclockwise (CCW) can reduce the output to about 70% of the maximum.
If adjustment cannot be completed within this range, change the [GAIN MODE (L/H)] and [RANGE (1~5)] DIP switch setting.

3-6) CHECK (Pseudo input signal setting rotary switch)
(Pseudo input signal generating push switch)
By pressing a [CHECK] button switch, a pseudo input signal can be generated and added to the input signal. A pseudo input signal is generated only while the push switch is pressed. The pseudo input signal can be set at about $0.15 \mathrm{mV} / \mathrm{V}$ step by 16 position rotary switch. After calibration of the scale is completed, with no load (output is 0 V or 4 mA), pressing a [CHECK] push switch (keep pressing) and turn a [CHECK] rotary switch to set the output to be 75% or more of measured value of the maximum load. By making a note of the rotary switch setting position and output value, it can be used as a secondary calibration value. Even if the span trimmer is touched after calibration, the span amount can be re-calibrated based on this secondary calibration value.

3-7) FILTER (Cut off frequency of analog filter)

Two slide switches determine the cut off frequency of analog filter to response incoming signal.

First slide switch (L, ML, MH,H)

| H | Response quickly (cut off frequency is higher) | Tend to fluctuate output |
| :--- | :--- | :--- | :--- |
| MH | | |
| ML | | |
| L | Response slowly (cut off frequency is lower) | Tend to be stable output |

Second slide switch $(x 2, x 5, x 10)$ is used for a multiple of cut off frequency.
Cut off frequency (-3 dB , analog filter) combined with two slide switches as below.

Cut off frequency				
	L	ML	MH	H
$x 2$	2 Hz	20 Hz	200 Hz	2 kHz
$x 5$	5 Hz	50 Hz	500 Hz	4.5 kHz
$\times 10$	10 Hz	100 Hz	1 kHz	7 kHz

3-8) Remote sensing function

When using a longer Load Cell or sensor cable, resistance of the cable is not negligible and its resistance vary if environment temperature vary. Fluctuation of resistance will cause fluctuation of voltage drop and fluctuation of applied voltage to a sensor and result in measurement error.
Remote sensing function helps to decrease a measurement error. This function requires a sensor cable of 6core wire. If 4core wire cable is used, set two attached metal plates as they are at the time of shipment. If 6core wire cable from Load Cell with remote sensing is used, remove two metal plates from terminal and make a remote sensing function effective.

!CAUTION

In case of not using a remote sensing function, make it sure to set two attached metal plates to make electrical short between +SEN and +EXC terminal also between -SEN and -EXC terminal. Otherwise a remote sensing circuit in this unit does not work correctly and will abnormal voltage is applied to a sensor and might damage a sensor of Load Cell or this unit.

§4. Calibration

Calibrate the output level to $0 V$ with no load on Load Cell, and calibrate the output level to the desired voltage with maximum load on Load Cell. Current output $4 \sim 20 \mathrm{~mA}$ is available when voltage output is adjusted to $0 \sim 5 \mathrm{~V}$. Calibration operation is based on "actual load calibration" using a known weight such as a reference weight.

4-1) Necessary setting prior to calibrate

1). Select appropriate excitation voltage from $10 \mathrm{~V}, 5 \mathrm{~V}$ or 2.5 V according to the specification of applied voltage of Load Cell.
(Make sure to select before calibration, otherwise measurement error occurs and re-calibration will be needed)
2). Select appropriate filter setting ($\mathrm{L}, \mathrm{ML}, \mathrm{MH}, \mathrm{H}, \mathrm{x} 2, \times 5, \times 10$)

Cut off frequency is selected from 2 Hz to $7 \mathrm{kHz}, 12$ frequencies.
3). Amplifier gain setting (GAIN MODE, RANGE setting)

Set the amplification range for the desired output level. Calculate Load Cell output of maximum load and select the corresponding GAIN MODE (H/L) and RANGE (1~5).
For a calculation method of Load Cell output of maximum load, refer to section 3-4).
4). Make sure to [AZ] LED is turned OFF

Push [AZR] button for 3 seconds to cancel auto zero if turned ON.

4-2) Calibration method with actual load
1). Put nothing on Load Cell (only the initial Tare load is applied)
2). Turn a [TARE] rotary switch to the position where the output is closest to 0 V or 4 mA .
3). Turn a [ZERO] trimmer (Coarse, Fine) to adjust the output to OV or 4 mA .
4). Put a known weight such as a reference weight on Load Cell and turn a [SPAN] trimmer (Coarse, Fine) to adjust to the desired output voltage or current.
5). Remove a known weight such as reference weight from Load Cell.
$6)$. Confirm that the output is 0 V or 4 mA . If not, repeat from step 3) above.

!CAUTION

Current output $4 \sim 20 \mathrm{~mA}$ is available when voltage output is adjusted to $0 \sim 5 \mathrm{~V}$. When using voltage output and current output simultaneously, calibration of voltage output has priory and should have been done first. After calibration, if there is an error of 4 mA or 20 mA of current output, use a fine adjustment trimmer 'curr fine (Z, S) ' for zero and span of current output, please refer to 5-3).
When only using current output, calibrate current output directly using of ZERO and SPAN adjustment trimmer.

If calibration operation cannot be done properly, refer to section §5 Troubleshooting and take measures.

§5. Troubleshooting

If this unit is malfunctioning, please contact us if the problem cannot be solved by the following measures. At this time, please inform us of the model name, product serial number, the malfunction symptoms and usage as much as possible. The model name of Load Cell or a sensor connected to this unit should be also informed.

5-1) Basic check point

1). Check whether the power supplied voltage (AC85 to 264 V or DC 20 to 27 V) is normal and stable
2). Check whether the terminals are connected correctly and firmly
$5-2$) What to do if the desired calibration is not achieved
1). Zero adjustment cannot be done.

Zero adjustment range is $\pm 0.2 \mathrm{mV} / \mathrm{V}$
If the output is more than $0 V$ even if a [ZERO] trimmer is turned fully counterclockwise (CCW), increase a [TARE] rotary switch setting.
If the output is less than OV even if a [ZERO] trimmer is tuned fully clockwise (CW), decrease a [TARE] rotary switch setting.
2). When span adjustment, the desired output voltage cannot be set.

If the output goes below the desired value even if a [SPAN] trimmer is turned fully clockwise (CW), change a [GAIN MODE] and [RANGE] DIP switch and increase the amplification by one step.
If the output exceeds the desired value even if a [SPAN] trimmer is turned fully counterclockwise (CCW), change a [GAIN MODE] and [RANGE] DIP switch and decrease the amplification by one step.
10 steps can be set according to the [GAIN MODE] and [RANGE] DIP switch setting. If the desired output is not obtained even if all the DIP switch setting, check whether Load Cell output satisfies the sensitivity adjustment range of this unit. Choose only one step of the setting of [RANGE (1~5)]
$3)$. Output voltage is out of range of $\pm 10 \mathrm{~V}$ or output current is out of range of $4 \sim 20 \mathrm{~mA}$ even though it is not overloaded.
(1) When a part of Load Cell cable is disconnected. (Ref: Section 5-5)
(2) A [TARE] rotary switch setting is inappropriate. (Ref: Section 3-2)
(3) A [GAIN MODE] or [RANGE] DIP switch setting is inappropriate. (Ref: Section 3-4)
(4) When Load Cell becomes defective. (Ref: 5-5)
$5-3$) Fine tuning of zero and span of current output
Current output $4 \sim 20 \mathrm{~mA}$ is available when voltage output is set to $0 \sim 5 \mathrm{~V}$. A fine adjustment trimmer 'curr fine $(Z, S)^{\prime}$ is adjusted at the factory. If re-tuning of current output is necessary when outputting voltage and current simultaneously and connected equipment has an error for measuring voltage and current, take measures as follows. But combination other than $0 \sim 5 \mathrm{~V} / 4 \sim 20 \mathrm{~mA}$ is impossible.

There are two adjustment trimmers on the front panel.
curr fine (Z) : Zero adjustment trimmer of current output (1 rotation)
Adjust this trimmer to 4 mA when output voltage is 0 V
curr fine (S) : Span adjustment trimmer of current output (1 rotation)
Adjust this trimmer to 20 mA when output voltage is 5 V

Current output is adjusted properly at the shipment in our factory. It is not necessary to re-adjust it. But when current output is not appropriate even if re-adjusting has been done, please contact us.
$5-4$) Judgement if this unit is malfunction
1). Check the excitation voltage of Load Cell

Checking the excitation voltage between terminal No. 1 (+EXC) and No. 4 (- EXC) is stable at $10 \mathrm{~V}, 5 \mathrm{~V}, 2.5 \mathrm{~V}$, tolerance $\pm 5 \%$ respectively. If it is not stable, a power supply circuit inside this unit may be defective.
If excitation voltage exceeds 10 V , such as 12 V , check the connection of remote sensing wire. If 4 core cable is used from Load Cell, it should make electrical short between + SEN and +EXC terminal also between -SEN and -EXC terminal. Otherwise excess voltage is applied to Load Cell.
2). Short the output voltage of Load Cell (making an electric short between terminal No. 5 (+SIG) and No. 6 (-SIG)). In other words, the input voltage to this unit is made zero.

At this time, set a [TARE] rotary switch to '0' once. In this state, the voltage which adjusted by a [ZERO] trimmer is output, so the output does not become 0V, but it can be checked whether the output is stable.
If it is not stable, an amplification circuit in this unit may be defective. If it is stable, check Load Cell side.
Please restore the setting of a [TARE] rotary switch to the previous position after checking.

5-5) Check Load Cell

Since Load Cell is composed of a bridge circuit, it is possible to make a rough judgement by measuring the input / output resistance and insulation resistance.

* Please be sure to turn power OFF of this unit before checking Load Cell.
1). Failure judgement method by Load Cell resistance value.
(1) Remove all Load Cell cables.
(2) Measure the bridge resistance of Load Cell with a tester and check if there is any abnormality in the input / output resistance.
2). Failure judgement method based on Load Cell insulation resistance
(1) Remove all Load Cell cables.
(2) Measure the insulation resistance between shield and each cable of Load Cell at a voltage within 50 V .
In addition, the insulation resistance between a metal case of Load Cell and each cable other than shield is also measured at a voltage within 50 V .
(3) If the insulation resistance is $1000 \mathrm{M} \Omega$ or more, Load Cell is mostly good.
$5-6$) Output doesn't become zero even if AZ switch is pushed
1). Output won't be changed and [AZ] LED is blinking

When output voltage exceeds $\pm 2.0 \mathrm{~V}$ before pushing a [AZ] button or inputting [AZ] command, ignore Auto Zero and blink [AZ] LED as an error. However this unit is operated normally as before.
When ignoring [AZ] command, no answer back [SET] is transmitted, it is able to judge an error at the external controller side.
Blinking [AZ] LED will be stopped after pushing a [AZR] button or operating Auto Zero successfully within the range of output $\pm 2.0 \mathrm{~V}$.
2). Output won't be OV or 4 mA completely

Circuit of Auto Zero have been adjusted in the factory, there is no need to re-adjust it after shipment. If re-adjustment is needed because the connected equipment has an error for measuring voltage and current, take following measures to adjust. If output doesn't become zero even if after adjustment has done, please contact us.

If residual voltage or current is large after AZ operation, take measures as follows.
(1) Put nothing on Load Cell (only the initial Tare load is applied) and check zero output. Operate zero calibration if needed.
(2) Turn power OFF once.
(3) Turn power ON while [AZ] button is pushed. Enter zero adjustment mode of AZ. Starts to blink [AZ] LED.
(4) Push [AZ] button to increase the output and push [AZR] button to decrease the output. Set output to $0 V$ or 4 mA using the two buttons.
(5) Turn power OFF and turn ON again without pushing any button.

After above adjustment has been done, put nothing on Load Cell and push [AZ] button. Check the output voltage is within $\pm 2 \mathrm{mV}$ or the output current is within $4 \mathrm{~mA} \pm 6.4 \mu \mathrm{~A}$ while [AZ] LED is turned ON.

Next, put a load on Load Cell and set the output larger within the range of Auto Zero. (i.e. 2.0 V). Push [AZ] button and check the output become OV or 4 mA .

If residual voltage or current is large compared the one when operating $A Z$ with no load, proceed to the following measures.
(1) Push [AZR] button and cancel Auto Zero. Put a load on Load Cell and set output voltage to 1.5 V to 2.0 V or set current output to 8.8 mA to 10.4 mA . Turn power OFF once.
It is possible to use [CHCEK] button and [CHCEK] rotary switch instead of putting a load on Load Cell. But in this case, keep pushing [CHCEK] button.
(2) Turn power ON while [AZR] button is pushed. Enter span adjustment mode of AZ. Starts to blink [AZ] LED. But blinks faster than zero adjustment mode of AZ.
(3) If output doesn't become 0 V or 4 mA , push [AZ] button to increase the output and push [AZR] button to decrease the output. Set output OV or 4 mA using the two buttons.
Use [CHCEK] switch as substitution of a load, keep pushing [CHCEK] button.
(4) Turn power OFF and turn ON again without pushing any button.

After above adjustment has been done, put/remove a load on Load Cell and push [AZ] button. Check the output voltage is within $\pm 2 \mathrm{mV}$ or the output current is within $4 \mathrm{~mA} \pm$ $6.4 \mu \mathrm{~A}$ while [AZ] LED is turned ON.

§6. Installation and connection method

6-1) Installation environment, etc.

1) The operating temperature range of this unit is $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.

Consider installing in a place not exposed to the direct sunlight.
2) This unit is operated with power supplied voltage AC85V to 264 V as standard, or DC20V to 27 V as option.
Note that connecting to a different voltage may cause failure or damage.
3) Please fix this unit with M4 screw using hole 2-Ф4.5 of the base bracket.

6-2) Terminal connection

Wiring to this unit is done with 7.62 mm pitch 14 pin terminal block. The shield line of each cable shall be grounded by either this unit or each connected instrument, so that there is no ground loop.
1). Load Cell, Analog output and Power line connection
7.62 mm pitch terminal block

No.	Connection signal			
1	+EXC	Excitation voltage to Load Cell $(+)$		
2	+ SEN	Remote sense input $(+)$		
3	- SEN	Remote sense input $(-)$		
4	- EXC	Excitation voltage to Load Cell $(-)$		
5	+ SIG	Input signal from Load Cell $(+)$	COM	
6	- SIG	Input signal from Load Cell $(-)$	\#11) are	
7	SHL	Shield line of Load Cell cable	common.	
8	Vout	Voltage output signal $(+)$	The shield line of	
9	COM	Voltage output signal $(-)$	the output signal	

Applicable crimp terminal: Crimp terminal for M3 up to 6 mm width
2). Control I/O connection

5 mm pitch screw-less terminal block

No.	Connection signal	
15	AZ	Auto Zero command (contact input)
16		
17	SET-C	Answer back output (Corrector)
18	SET-E	Answer back output (Emitter)
19	SHL	Shield line of I/O control cable
Applicable wire range		
Single wire $=\Phi 0.4 \sim 1.2 \mathrm{~mm}^{2} \quad($ AWG26~16)		
Strand wire $=0.2 \sim 0.75 \mathrm{~mm}^{2} \quad(A W G 24 \sim 20), \quad$ wire OD $\geqq \Phi 0.18 \mathrm{~mm}$		
Standard peeled wire length: 11 mm		

3). Precautions for connection

(1) Terminal of +EXC and +SEN / -EXC and - SEN is connected by two metal plates at the time of shipment. If using a 4-core Load Cell cable and not using remote sensing function, make it sure to two attached metal plates are connected as they are at the time of shipment. If using a 6 -core Load Cell cable, remove two metal plates from terminal and make remote sensing function effective.
(2) Remote sensing of this unit is effective when a resistance of Load Cell cable less than 10Ω (20Ω, cable length to and from). General AWG24 wire of 100 m length has a resistance about 9Ω. Use a Load Cell cable as thick as possible.
(3) Ground the shield line of each cable on either this unit or the connected instrument. If connected instrument doesn't have a terminal of shield, make a use of terminal \#12(E) of this unit.
(4) Since cable wiring color of Load Cell (a sensor) differs depending on the manufacturer, check the wiring color with Test Report attached to Load Cell.
(5) In general Load Cell, shield line of Load Cell cable is not connected to a metal case of the Load Cell. If the ground potential of this unit is different from the potential of Load Cell metal case, it is easy to be affected by inductive noise.
Therefore, make sure that Load Cell mounting base is at the same potential as metal case of this unit by a grounding cable.
(6) Regarding of length of analog output cable, it depends on surrounding electromagnetic circumstances, voltage output cable length should be shorter than 5 m .

6-3) To obtain stable measurement

When a sensor of strain gauge (i.e., Load Cell, Pressure gauge) is amplified by an amplifier or is connected to an indicator, the value may fluctuate or may not be stable.

(Fig. 1)

This is because of difference of an electric potential between a sensor part and an amplifier / indicator part. It is induced from electricity rounding of general commercial power supply (AC100V/AC200V).

The most effective way to improve stability is to use a cable to connect an Earth terminal of an amplifier / indicator to a case or chassis of sensor, like Fig 2.

If it is difficult to find an Earth terminal of sensor side, loose bolt of metal case of sensor and connect the cable. Please make the electric potential be same as possible.

In case that a sensor and amplifier / indicator have installed apart separately, stability improves when an Earth terminal of indicator / amplifier and metal case of sensor connect to the nearest earth of each. But if they are apart far from each other, it may not bring a good result due to different electric potential of the earth. However, in such a case, stability improves if connecting a cable as Fig 2.
§7. List of Models and Accessories

7-1) Model
$\underline{L A-1031 A-D C}$
Power supplied voltage
Blank : AC85 to 264 V
DC $:$ DC20 to 27 V (Option)
Product model name

7-2) Accessories
Metal plate for shorting Operation Manual

2 pcs (attached to the terminal)
1 copy

§8. Specifications

8-1) Power supply part for Load Cell
1). Excitation Voltage
2). Number of Connectable sensors

3). Correction of voltage drop

DC10V, $5 \mathrm{~V}, 2.5 \mathrm{~V} \pm 5 \%$ (selective at a switch on rear panel)
4 sets of 350Ω type Load Cell

Remote sensing function
Resistance of Load Cell cable (to and from) should be less than 20Ω (equivalent to AWG24 wire $\times 100 \mathrm{~m}$)
$8-2$) Amplifire part and I/O part

1). Input range	$\pm 3.3 \mathrm{mV} / \mathrm{V}$ (sum of tare amount and s
2). Initial tare elimination	0 to $2.25 \mathrm{mV} / \mathrm{V}$ ($0.15 \mathrm{mV} / \mathrm{V}$ step by 16 position rotary switch)
3). Zero adjustment	```Range approx. }\pm0.2\textrm{mV}/\textrm{V Multi-turn trimmer adjustment (Coarse, Fine adjustment: 1 5 \text { rotations each)}```
4). Auto Zero	Range $\pm 2.0 \mathrm{~V}$ When output is within the above range after zero adjustment and initial tare elimination, set output to OV if operating Auto Zero function. [AZ] button or external [AZ] command enables Auto Zero. [AZR] button cancels Auto Zero.
5). Sensitivity adjustment	Amplification variable range: $\times 3333$ to $\times 151$ (EXC=10V) Span amount 0.15 to $3.3 \mathrm{mV} / \mathrm{V}$ can output $4 \sim 20 \mathrm{~mA}$ or $0 \sim 5 \mathrm{~V}$ (If span amount is $0.6 \mathrm{mV} / \mathrm{V}$ or more, 0 to 10 V can be output) Standard sensitivity: Output $0 \sim 5 \mathrm{~V}$ or $4 \sim 20 \mathrm{~mA}$ when EXC $=10 \mathrm{~V}$, $0 \sim 1 \mathrm{mV} / \mathrm{V}$ input
Gain More	$\mathrm{H}(0.15$ to $0.6 \mathrm{mV} / \mathrm{V}) / \mathrm{L}(0.6$ to $3.3 \mathrm{mV} / \mathrm{V})$ (DIP switch)
Range	5 steps (DIP switch)
Span	Multi-turn trimmer adjustment (Coarse, Fine adjustment: 15 rotations each)
$6)$. Voltage output	0 to $\pm 5 \mathrm{~V}$ (Load resistance $2 \mathrm{k} \Omega$ or more) Bipolar output For spans amount $0.6 \mathrm{mV} / \mathrm{V}$ or more, output of 0 to $\pm 10 \mathrm{~V}$ is possible.
7). Current output	4 to 20 mA (Load resistance 510Ω or less) (corresponding to voltage output 0 to 5 V)
8). Simultaneous output	Output voltage and current simultaneously. Because zero and span trimmer are common for both output, there is 0.2% error of conversion of voltage to current. (two trimmers on front panel are reserved to fine tune zero and span of current output)
9). Non linearity	$\pm 0.05 \%$ FS ($\pm 0.1 \%$ FS when EXC=2.5V)
10). Filter Characteristic	```Selective from 2Hz to 7kHz, 12 frequencies Low pass filter, -12dB/oct. Range switch : L,ML,MH,H Multiple switch : x2, x5, x10```

11). Temperature coefficient

Zero	$\pm 0.005 \% \mathrm{FS} /{ }^{\circ} \mathrm{C}$ typ. (at standard sensitivity)
	(twice the above at EXC $=5 \mathrm{~V}, 4$ times at EXC=2.5V)
Sensitivity	$\pm 0.005 \% \mathrm{FS} /{ }^{\mathrm{C}} \mathrm{C}$ typ.
	$\left(\pm 0.01 \% \mathrm{FS} /{ }^{\circ} \mathrm{C}\right.$ typ. at EXC=2.5V)

12). Check function A pseudo input signal can be generated by pushing [CHECK] button. It is added to the input signal.
Can be set up to about $2.25 \mathrm{mV} / \mathrm{V}$ about $0.15 \mathrm{mV} / \mathrm{V}$ step. (Temperature coefficient: $25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum)
13). Switches

Two button switches
[AZ] operates Auto Zero [AZR] cancels Auto Zero
14). External input

One bit (AZ)
One shot Make contact (Pulse width 0.2 second)

Equivalent input circuit
15). Control output

One bit (SET)
Open Collector output, negative logic, one bit one common Isolated by photo coupler, NPN transistor
Collector - Emitter: ON when Make
Rated output: DC30V, 30 mA (resistance load)
Saturation voltage between Collector and Emitter: 1.2V or less Photo coupler, TLP-127, TOSHIBA or the equivalent.

Equivalent output circuit

8 - 3) Analog Auto Zero function
1). Auto Zero

Pushing [AZ] button for 3 seconds or external [AZ] input (0.2 s one shot Make pulse) let output voltage within $\pm 2.0 \mathrm{~V}$ set to 0 V . Output increase and decrease amount from that point. Output should be stable for 0.5 second before AZ operation.
[AZ] LED is turned ON while AZ operation
Pushing [AZR] button for 3 seconds cancel Auto Zero
MA4-00294-R0

Time length to set $A Z$ less than 0.2 second
Resolution of $A Z \quad$ less than $500 \mu \mathrm{~V}$ or $1.6 \mu \mathrm{~A}$
Elimination accuracy less than $\pm 2 \mathrm{mV}$ or $6.4 \mu \mathrm{~A}$ (maximum residual voltage or current after $A Z$ operation)
Out of range operating AZ If output is out of range of $\pm 2.0 \mathrm{~V}$, ignore $A Z$, [AZ] LED starts to blink and keep it until the next successful AZ operation or pushing [AZR] button for 3 seconds.
Retain of $A Z \quad$ Data of $A Z$ is memorized in a non-volatile memory (FeRAM), $A Z$ is kept operating even if this unit is turned power OFF/ON
2). Answer back (SET) After input of AZ command, procedure done properly, output [SET] signal for 0.2 second as answer back. (Open Collector signal) If it is out of operating range of $A Z$, ignore $A Z$, doesn't output [SET] signal. [AZ] LED starts to blink as an error indication.

8-4) General

1). Power stability $\pm 0.02 \%$ FS (Power supplied voltage fluctuation within $\pm 10 \%$)
2). Power supplied AC85 to $264 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ as standard voltage DC20 to 27 V as option
3). Current consumption 0.6 A typ.(AC100V), 0.4 A typ.(AC200V), 0.5 A typ.(DC24V)
4). Operating Temp./Humidity $\quad 0 \sim+40^{\circ} \mathrm{C}, ~ 20 \sim 85 \%$ R.H. without condensation
5). Store Temp./Humidity $-20 \sim+60^{\circ} \mathrm{C}, ~ 20 \sim 85 \%$ R.H. without condensation
6). Mass approx. 0.7 kg
7). Mounting method Wall mount method Fix with M4 screw using 2-Ф4.5 of the base bracket

§9. Dimensional Drawing

Fixing hole

§ 10 . Functional block diagram

§11. Timing chart of Auto Zero (AZ) operation

